

Theta/300-400 **Converter Indicator** MAINTENANCE MANUAL

CONTENTS

Section | GENERAL INFORMATION

Section II INSTALLATION MANUAL

Section III OPERATING MANUAL

Section IV MAINTENANCE MANUAL

Section V PARTS LIST

Published by:

General Aviation (Area 317-546-1113) Price: Single Copy \$10.00

GENERAL INFORMATION

1-1. INTRODUCTION

This service manual contains all of the information normally required to install, operate, and maintain the Genave THETA/300 & 400 Converter/Indicators.

1-2. DESCRIPTION

The THETA/300 and THETA/400 were designed to be companion equipment to the Genave ALPHA/600 NAV/COM transceiver. Both models are panel mounted converter-indicators. The THETA/300 displays VOR/LOC information only while the THETA/400 displays VOR/LOC plus glideslope information.

The THETA/300 utilizes 11 integrated circuits and 8 silicon transistors while the THETA/400

utilizes 15 integrated circuits and 13 silicon transistors in solid state computer circuitry designs which provide easily recognized course information. Both models feature VOR/LOC press-totest, no-ambiguity TO-FROM-OFF lamps, left/ right course deviation indicator, indicator backlighting, and a full visibility OBS dial. The THETA/400 also features glideslope deviation indication and definitive glideslope operational warning lights. Both converter-indicators incorporate a self-contained regulated power supply. Backlight dimming is provided in both models. TO-OFF-FROM indicator lamp dimming is controlled by the special dimmer circuitry incorporated in the ALPHA/600. Left/Right autopilot outputs are provided by both units. The THETA/400, in addition, provides Up/Down autopilot outputs.

THETA/300 CONVERTER INDICATOR

Front Panel Size: Standard 3.125" round instrument hole
Depth Behind Panel: 8.125"
Weight: 2 lbs.
VOR Acc: ± 3° (meets RTCA DO-114, Paragraph 2, 1, a)
LOC Acc: ½ dot
VOR Lamp Sensitivity: 5 uv min. (meets RTCA DO-114, Paragraph 2.4)
LOC Lamp Sensitivity: 20 uv for 60% of standard deflection (meets RTCA DO-131, Paragraph 2.11)
Autopilot Outputs: 150 mv for full scale deflection (standard)
LOC Deflection: 500 uv, 3 dot ± ½ dot at ± 4 db
VOR Self Test Accuracy: 2° at 0°

ENVIRONMENTAL

Temperature: Operating temperature range — 15° C to + 55° C Storage: — 40° C to + 71° C
Attitude: 30,000 feet operating
Vibration: Constant total excursion 0.1" from 5 to 55 Hz with a maximum acceleration of 1.5 G. Constant acceleration of 0.25 G from 55 to 2,000 Hz. (RTCA DO-138, catagory P)

THETA/400 CONVERTER INDICATOR

Front Panel Size: Standard 3.125" round instrument hole
Depth Behind Panel: 8.125"
Weight: 2 lbs.
VOR Acc: ± 3° (meets RTCA DO-114, Paragraph 2.1.a)
LOC Acc: ± ½ dot
VOR Lamp Sensitivity: 5 uv min. (meets RTCA DO-114, Paragraph 2.4)
LOC Lamp Sensitivity: 20 uv for 60% of standard deflection (meets RTCA DO-131, Paragraph 2.11)
Glide Slope Sensitivity: 30 uv for 60% of standard deflection (meets RTCA DO-132, Paragraph 2.7) Applicable to Genave PHI/20
Glide Slope Deflection: 500 uv 2 dots ± ½ dot at ± 2 db
Autopilot Outputs: 150 mv for full scale deflection (standard)
LOC Deflection: 500 uv 3 dot ± ½ dot at ± 4 db
VOR Self Test Accuracy: ± 2° at 0°

ENVIRONMENTAL

C to + 55° C
Storage: — 40° C to + 71° C
Altitude: 30,000 feet operating
Vibration: Constant total excursion 0.1" from 5 to 55 Hz with a maximum acceleration of 1.5 G. Constant acceleration of 0.25 G from 55 to 2,000 Hz. (RTCA DO-138, catagory P)

1-4. EQUIPMENT SUPPLIED

a. 1—THETA/300 or THETA/400 Converter-Indicator

1-5. EQUIPMENT REQUIRED, BUT NOT SUPPLIED

- a. 1-ALPHA/600 NAV/COM Transceiver
- b. 1-Glideslope Receiver, THETA/400 only (If

INSTALLATION MANUAL

The following Section

is reproduced

and included with every

THETA/300-400

Converter-Indicator

It is made a part of

this manual

for your permanent

reference

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

THETA/300—400 Section II, Page 1

GENERAL AVIATION ELECTRONICS, INC. 4141 KINGMAN DRIVE, INDIANAPOLIS, INDIANA 46226

INSTALLATION MANUAL

Theta/300 and Theta/400

Please Note:

THIS UNIT MUST BE INSTALLED BY a properly certificated and authorized person in accordance with the Federal Aviation Regulations, Part 43. No responsibility for improper installation of this unit is either implied or assumed by the manufacturer. Units shown to be installed in violation of the FARs will not be covered by the warranty and will remove any and all responsibility from the manufacturer for such equipment.

Marranty

manua) i foa eancalional Xurrasea onay. Y tha aguracy and completeness at the Afoamata on article in an early of article is a not examined for languages (tso lat your own which into the complete for languages (tso lat your own which is the complete for languages (tso lat your own which is the complete for languages (tso lat your own which is the complete for languages (tso lat your own which is the complete for languages (tso lat your own which is the complete for languages (tso lat your own which is the complete for languages).

Products bearing the trademark "GENAVE" or the trade name "GENERAL AVIATION ELECTRONICS, INC." have been fabricated by skillful technicians, under the strictest quality control conditions, using the finest materials and component parts available.

When properly adjusted and competently operated according to factory specifications and instructions, General Aviation Electronics, Inc. unconditionally guarantees and warrants all parts and bench service labor for one (1) full year from the date of the original installation of the unit.

This warranty shall not apply to malfunction, which in the opinion of General Aviation Electronics, Inc. is the result of abusive use, accident, willful destruction, improper or unauthorized repair or installation. All service under this warranty must be performed by an Authorized Genave Distributor, or by returning the unit or units, freight pre-paid, to the factory at Indianapolis, Indiana.

GENERAL AVIATION ELECTRONICS, INC.

Ву

Elmore W. Rice, III, President

The Company offers no other guarantees or warranties expressed or implied

Proper Installation Will Assure Quality

The unit you are installing is a high quality, rugged, complex piece of electronic equipment. It has been manufactured under rigid quality control and has been fully tested and operated at high temperatures to stabilize the component parts.

Proper installation of the unit into your customer's aircraft is essential to complete the quality assurance program under which the unit was manufactured.

Specifications:

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc., all rights reserved.

THETA/400

CONVERTER INDICATOR

Front Panel Size: Standard 3.125" round instrument hale Depth Behind Panel: 8.125" Weight: 2 lbs. VOR Acc: ± 3° (meets RTCA DO-114, Paragraph 2.1.a) LOC Acc: ± ½ dot VOR Lamp Sensitivity: 5 uv min. (meets RTCA DO-114, Paragraph 2.4) LOC Lamp Sensitivity: 20 uv for 60% of standard deflection (meets RTCA DO-131, Paragraph Glide Slope Sensitivity: 30 uv for 60% of standard deflection (meets RTCA DO-132, Paragraph 2.7) Applicable to Genave PHI/20 Glide Slope Deflection: 500 uv 2 dots ± 1/2 dot at ± 2 db Autopilot Outputs: 150 mv for full scale deflection (standard) LOC Deflection: 500 uv 3 dot \pm $\frac{1}{2}$ dot at \pm 4 db VOR Self Test Accuracy: \pm 2° at 0°

ENVIRONMENTAL

Temperature: Operating temperature range — 15° C to + 55° C Storage: — 40° C to + 71° C
Altitude: 30,000 feet operating Vibration: Constant total excursion 0.1" from 5 to 55 Hz with a maximum acceleration of 1.5 G. Constant acceleration of 0.25 G from 55 to 2,000 Hz. (RTCA DO-138, catagory P)

Unpacking

CAREFULLY REMOVE the unit and its mounting accessories from the shipping container by removing the staples from the top of the carton and lifting the contents straight out. The carton should be saved until the installation is complete in the event that damage is discovered or return of the unit is necessary for some reason. Any damage due to shipping should be reported and a claim filed as soon as possible with the shipping company. (If it is necessary to re-ship, use our container which is specifically designed for that purpose.)

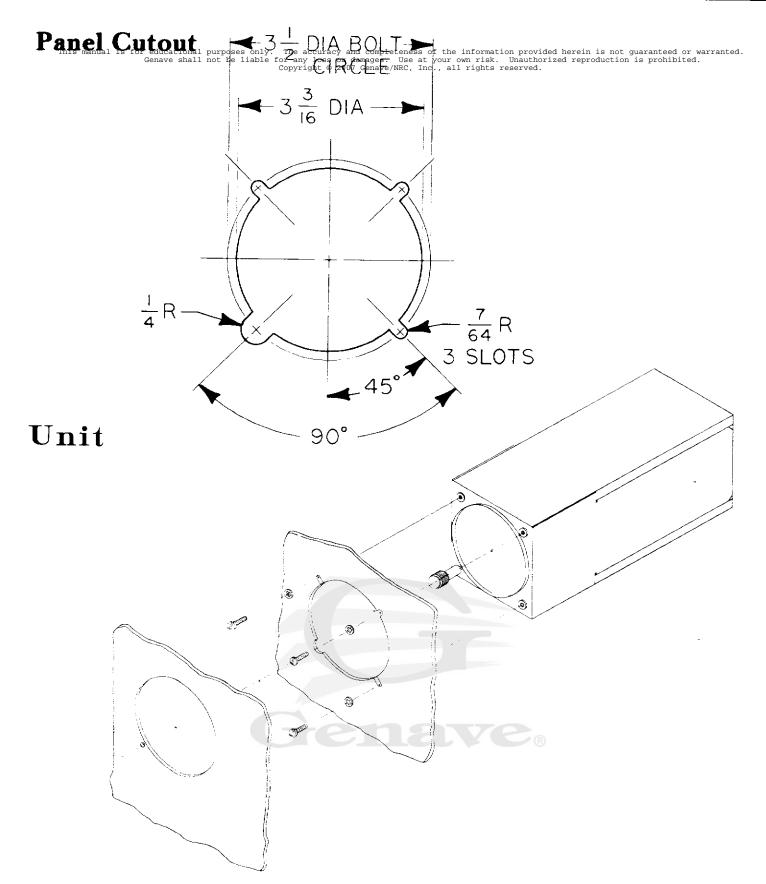
Pre-Installation Check

VISUALLY INSPECT the unit for any obvious external damage, such as dents, loose wires, etc. Any damage not related to shipping should be reported to General Aviation Electronics, Inc., 4141 Kingman Drive, Indianapolis, Indiana (46226), Area Code 317-546-1111, as soon as possible.

Damage due to shipping should be reported to and a claim should be filed promptly with the transportation company.

All units are shipped in perfect operating condition. However, a pre-installation electrical test may be performed to assure that the unit has suffered no internal damage during shipment. For a detailed test procedure, refer to the Maintenance Section of the Service Manual, DO NOT ATTEMPT to bench test the unit without proper equipment as specified in the Service Manual.

THE LOCATION of the Unit in the aircraft should be carefully selected with due consideration to the following:


 The unit generates only a very small amount of heat and, as such, does not require any type of cooling. However, the unit must NOT be mounted directly above a vacuum tube device or any other equipments that generate a large amount of heat unless such equipments have cooling provisions installed to keep the heat generated therein from coming in contact with other equipments mounted in close proximity to them.

MOUNTING THE UNIT DIRECTLY OVER UNCOOLED VACUUM TUBE EQUIPMENT OR IN THE HOT AIR BLAST OF ANY DEVICE, INCLUDING CABIN HEATERS, WILL AUTOMATICALLY VOID THE WARRANTY

2. The placement of the unit should be such that all controls are easily accessible.

Installation

- 1. The aircraft panel cutout for the THETA/300 and THETA/400 is the standard round instrument hole shown in this manual.
- 2. Install the indicator in the aircraft panel, using #6-32 Binder head screws and lock-washers.
- 3. Connect the power cable to the ALPHA/600 Nav-Com. Mechanically secure the cable at appropriate support points.
- 4. Update the appropriate logs and papers of the aircraft.
- 5. Fill out and return the bottom section of the warranty card.
- 6. Give the remainder of the warranty card to your customer. The proper sections of the warranty card MUST be completed and returned to Genave by both the dealer and the customer for the warranty to be in effect.

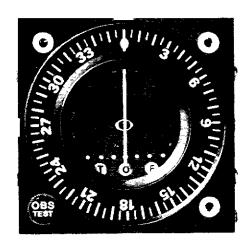
Post Installation Check

UPON COMPLETION of the installation, a flight test is desirable to insure that the unit is operating properly. The accuracy and completeness of the information provided herein is not guaranteed or warranted. Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited. Copyright © 2007 Genave/NRC, Inc. All rights reserved.

THETA 300/400

NOTES:

1. PIN 5 IS DIMMER LINE


PIN 12 IS DIMMER FOR FOR OBS DIAL AND METER FACE INDICATOR T/O/F LAMPS AND GLIDESLOPE ON/OFF LAMPS.

THIS DIMMER LEVEL IS SET BY THE "DIMMER" CONTROL ON ALPHA/600 PANEL.

MHITE BROWN BLACK GREEN BI.UE SPARE RED RED/WHITE VIOLET ORANGE **YELLOW** SPARE P102 10 Ø ∞ 0 Сī 4 w 2

1	3 :	- 2	5 \	٥	∞ -	7	2	Λ	4	w	2		•	J102
	T/O/F LAMP DIMMING	AP UP -	AP UP +	GLIDESLOPE INPUT	GROUND AIRFRAME	AP RIGHT -	AP RIGHT +	BACKLIGHT DINMING	SPARE	VOR/LOC INPUT	JEAKE.	CDADE	+14 VDC	

OPERATING MANUAL

THETA/300

OPERATING CONTROLS AND INDICATORS

NOTE: The THETA 300 and THETA/400 are identical with the exception of the glideslope display capability of the THETA

The 14 VDC primary power for the converterindicator is usually supplied by means of the Nav Com receiver's switched A -: therefore, the Nav Com receiver must be "On" in order to operate the converter-indicator.

The THETA 400 has five operating controls and indicators, while the THETA 300 has only three operating controls and indicators. These controls and indicators are as follows:

Omni Bearing Selector (OBS)

Adjusts Omni to desired radial and tests Omni system.

Turn knob clockwise or counterclockwise to desired bearing, displayed at the vertical hairline at the top of the compass rose.

THETA/400

The needle will indicate the system accuracy and the "TO" light should appear. From needle center to the first dot is approximately two degrees and each dot thereafter is approximately two more degrees.

TO-OFF-FROM Lights

The To-Off-From lights provide the pilot with information concerning the validity of the displayed information and the position of the selected Omni radial with respect to the Omni station.

GREEN: (to)

Illuminates when an Omni signal of adequate strength is received and the bearing selected on the Omni Bearing Selector (OBS) is, or is close to, the reciprocal of the radial on which the aircraft is located.

Illuminates when the Localizer signal of the frequency shown in the Nav Frequency Readout window is of adequate strength.

Illuminates when the TEST function

To test the Omni system, depress the OBS knob. is executed.

manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

THETA/300-400 Section III, Page 1 YELLOW manufluming the actual purpose only. The accuracy and completeness of the information provided herein is not guaranteed or warranted. (from) adequate strength is received and the control of the strength is received.

bearing selected on the Omni Bearing Selector (OBS) is the same as, or close to, the radial on which the aircraft is located.

RED: (off)

Illuminates when the microphone but-

ton is depressed.

Illuminates when the Omni or Localizer signal strength is too low.

Illuminates in the "cone of silence" over an Omni station to indicate station passage.

NOTE: Needle deflections of course deviation display meter should not be used when the Off Light (RED) is partially or fully illuminated.

Omni/Localizer Needle.

Solid white bar which indicates a "fly-left" or "fly-right" condition to make good the desired Omni or Localizer course.

Dashed white and black bar which indicates a "fly-up" or "fly-down" condition to make good the desired Glide Slope course.

Glide Slope ON-OFF Lights (On THETA/400 Only).

GREEN: Illuminates when G/S signal is of ade-

(on) quate strength.

RED: Illuminates when G/S signal is unre-

(off) liable.

In addition to these controls and indicators on the THETA/300 or THETA/400, additional controls mounted external to the converter-indicator may be used. Dimming of the To-Off-From lamps and the On-Off lamps (THETA/400 Only) can be adjusted utilizing the Dimmer pot on the front panel of the ALPHA/600 (Refer to Section III, ALPHA/600 Maintenance Manual). The back lighting level (Dial Illumination) may also be adjusted utilizing the aircraft panel light dimming control or a separate back light dimming control, if this feature was provided at the time of equipment installation.

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

Section III, Page 2 THETA/300-400

SECTION IV MAINTENANCE MANUAL

4-1. INTRODUCTION

This section provides the basic information required for electronic testing, alignment, and repair of the THETA/300 and THETA/400 converter-indicators. It is assumed that the person working on the unit has a reasonable familiarity with the principles and terminology of avionics.

4-2. THEORY OF OPERATION

1. General

The 11 integrated circuits and 8 silicon transistors of the THETA/300, and the 15 integrated circuits and 13 silicon transistors of the THETA/400 are employed in a solid state computer circuitry design to provide high accuracy navigational information. Both units operate on +14 VDC which is usually switched by the Nav/Com transceiver. An internal regulated power supply is employed in both converter-indicators.

The converter-indicator circuitry is unique in design due to the absence of transformers of any type. The utilization of analog computer circuits and techniques has eliminated the need for transformers. Similarly, there are no "twin-T" or "Bridge-T" circuits in the design which eliminates one of the major sources of aging error prevalent in most converter-indicators.

For the purpose of discussion the converter-indicator circuitry will be broken down into the following major circuit groups:

- A. Omni Circuitry
- B. Localizer Circuitry
- C. Omni/Loc Low-Pass Amplifiers
- D. Omni/Loc Metering Circuitry
- E. Omni/Loc Lamp Circuitry
- F. Glideslope Circuitry (THETA/400 Only)
- G. Glideslope Low-Pass Amplifiers (THETA/ 400 Only)

- H. Glideslope Metering Circuitry (THETA/400 Only)
- I. Glideslope Lamp Circuitry (THETA/400 Only)
- J. Regulated Power Supply

2. Detailed Theory

A. Omni Circuitry—When an omni or localizer signal is fed to the converter-indicator it is first applied to an adjustable gain amplifier stage comprised of IC201A and associated circuitry. R204, the Sensitivity Adjust, allows the incoming signal to be set to the proper input level. The normal omni signal level at Pin 1 of IC201A is approximately 430 mvolts RMS with a standard 0° omni modulated RF input signal to the receiver of 500 microvolts. The normal localizer signal level at Pin 1 of IC201A is approximately 425 mvolts RMS with a standard center course modulated localizer RF input signal of 500 microvolts to the receiver.

The Omni/Loc input signal from IC201A is applied through the OBS Test Switch, SW201, to the omni and localizer circuits. The omni input signal is fed to the two separate channels of the omni circuitry. One channel is the AM channel while the other is the FM channel.

The AM channel consists of a phase correction network, a 30 Hz band-pass active filter, a unity-gain phase inverter, a 90° phase shifting network, a unity-gain non-inverting amplifier, a unity-gain phase inverter, the OBS Potentiometer, and a unity-gain non-inverting amplifier. R208, the Phase Correction Adjust, is used to correct for any incidental phase shifting that takes place in the omni circuitry.

The 30 Hz band-pass active filter consisting of IC201B, R209, C202, and C203 removes the 30 Hz AM component of the 9960 Hz subcarrier. The low-pass filter provides one output 180° out-of-phase and the following inverting amplifier provides one output in-phase with the input signal.

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

THETA/300—400 Section IV, Page 1

These two outputs caree applied to thee 180 ananes or damage R201 and CR202 kprovide blocking work of the omilitied.

Copyright © 2007 Genave/NRC, Inc., all rights reserved. O° terminals of the OBS potentiometer, respectively, and to an RC phase shifting network consisting of R212, R213, and C204. R212 allows the phase shift to be set at exactly 90°.

Outputs from the 90° phase shifting network are applied to a unity-gain non-inverting amplifier, IC202B. This amplifier provides one output in-phase and inverting amplifier IC203A provides one output 180° out-of-phase with the signal from the 90° phase shifting network. These two outputs are applied to the 90° and 270° terminals of the OBS potentiometer, respectively. The wiper on the OBS potentiometer, R290, will provide a 30 Hz AM signal whose phase may be selected.

This selectable phase signal is applied to the non-inverting unity-gain amplifier of IC203B. The output of IC203B is applied to each of the Omni/ Loc summing amplifiers.

The FM channel consists of one 9960 Hz amplifier/limiter, a Schmitt trigger, a slope detector. a low-pass active filter, and a variable-gain inverting amplifier.

The Omni input is first applied to the 9960 Hz LC amplifier consisting of IC204A and associated circuitry. This amplifier/limiter is tuned to 9960 Hz by means of L201 and C206.

IC204B is used as a Schmitt trigger to "square" and limit the 9960 Hz input. This technique reduces the possibility of any residual AM interference on the FM signal. The slope detector converts the FM signal to an AM signal and recovers the 30 Hz reference modulation. CR204 is used to reduce forward currents through CR203 and L202.

The 30 Hz band-pass active filter consisting of IC205A, R223, R224, C209, and C210 provides an output 180° out-of-phase while the variable gain inverting amplifier of IC204B and associated circuitry provide an output in-phase with the demodulated signal. These two outputs are applied to the Omni low-pass amplifiers. R227, the FM Balance Adjust, is used to set the output level of IC205B thereby equalizing the FM channel outputs.

When the Omni Test Switch, SW201, is moved to the test position, one of the FM reference channel outputs is applied through the omni test phase adjustment network of R230, R231, and C212 to the input of the AM channel.

circuitry signals when localizer signals are being received.

B. Localizer Circuitry—The localizer circuitry consists of a 90 Hz channel, a 150 Hz channel, and a common threshold detection amplifier which operates two FET switches. One of these FET switches is in the output circuit of each channel and therefore determines whether the localizer outputs will be applied to their appropriate summing amplifier.

The localizer signal is fed to the 90 Hz active band-pass filter of IC206A and associated circuitry and the 150 Hz active band-pass filter of IC206B and associated circuitry. The outputs from these filters are applied to the FET switches and to a detector circuit.

In the 90 Hz channel the band-pass filter output is applied to Q201, an FET switch, and CR205, the detector diode. The detected DC level is then applied to the threshold detection amplifier of IC207B via CR206.

In the 150 Hz channel the band-pass filter output is applied to Q202, the corresponding FET switch, and CR209, the detector diode. The detected DC level from CR209 is applied to the threshold detection amplifier via CR210.

When the detected negative DC level from either localizer channel reduces the bias on Pin 6 of IC207 below the threshold level as determined by R239 (approximately 4.8 volts) the output of IC207B is driven to approximately +9 VDC. This action turns on both FET switches, applies a control signal to the lamp circuitry via CR208 and R270, and blocks the input path to the omni circuitry as previously discussed.

R267, the Localizer Balance potentiometer, in the drain circuit of Q202, is used to equalize the localizer output signals which are applied to the low-pass amplifiers.

C. Omni/Loc Low-Pass Amplifiers—The lowpass amplifiers are used to convert the processed omni or localizer signal to a directional signal.

During omni operation, three signals from the omni circuitry are applied to the low-pass amplifiers. The output of the omni AM channel is applied to both summing amplifiers via R242, the AM Balance Adjust, and R269. Two FM channel outputs each 180° apart are applied to the lowpass amplifiers via R228 and R272. The low-pass amplifiers are comprised of IC208B and IC208A and their associated circuitry.

Thi When receiving ilocalizer signals the low-pass pleten voltage at the junction dof R275 and R276 provides ed. cuitry of IC208B amplifies the 90 Hz component of the localizer signal while the circuitry of IC208A amplifies the 150 Hz component of the localizer

The summing amplifier outputs are applied to the metering and lamp circuitry.

D. Omni/Loc Metering Circuitry—The Omni/ Loc metering circuits convert the directional signals from the low-pass amplifiers to a left-right visual indication which is displayed on M1, the course deviation indicator.

The low-pass amplifier outputs are rectified by means of CR207 and CR211. CR207 functions as a positive half-wave rectifier while CR211 functions as a negative half-wave rectifier.

The rectifier outputs, varying DC levels, are summed and applied to a low-pass active filter comprised of IC209B, C220, R249, and R250. The cutoff frequency of the low-pass filter is 1 Hz (RC = 1 sec.) and thus the meter is prevented from responding to transients. The low-pass active filter inverts the summed input signals.

The low-pass active filter output is applied to the meter driver circuitry of IC209A. If the filter output is negative, current will flow from the output of IC209A into the meter. If the filter output is positive, current will flow into the output of IC209A and therefore out of the meter. This action will cause current flow through the meter and therefore a meter deflection.

R256, the DC Balance Adjust, sets the DC level on Pin 3 of IC209A, therefore adjusting the relative positive and negative levels necessary to cause meter deflection.

E. Omni/Loc Lamp Circuitry—Two fixed 90° phase shift networks; R246 and C229, and R247 and C218; are connected to the outputs of the two low-pass amplifiers. The outputs of these networks have the same dependence upon the relative phase of the input signals as the summing amplifier outputs except that the amplitude response is shifted 90°. A positive output from IC208B causes Q203 to turn-on, increasing the output voltage at the junction of R275 and R276. A positive output from IC208B causes Q204 to turn-on, thereby reducing the voltage at the junction of R275 and R276.

IC210A and IC201B are used to switch the TO and FROM lamp drivers. When the voltage at the junction of R275 and R276 increases, IC201A provides a positive output which turns-on Q205 and turns-off Q206 via CR212 and IC211A. A negative

amplifiers function as signal amplifiers to Theorement Income a spositive goutput of IC210B which turns-on Q207 and turns-off Q206 via CR213 and IC211A. R285 is used to preferentially bias the input to IC211A to provide a positive output thereby turning-on Q206 when no input signal is present.

> When a localizer signal is being received the localizer threshold detection amplifier applies a control signal to the junction of R275 and R276 via CR208 and R270. This positive control voltage is used to turn-on the ON lamp.

F. Glideslope Circuitry (THETA/400 Only)— The glideslope circuitry consists of a 90 Hz channel, a 150 Hz channel, and a common threshold detection amplifier which operates two FET switches. One of these FET switches is in the output circuit of each channel and therefore determine whether the glideslope outputs will be applied to their appropriate low-pass amplifier.

The glideslope signal is fed to the 90 Hz active bandpass filter of IC801A and associated circuitry and the 150 Hz active bandpass filter of IC801B and associated circuitry. The outputs from these filters are applied to the FET switches and to a detector circuit.

In the 90 Hz channel the bandpass filter output is applied to Q801, an FET switch, and CR800, the detector diode. The detected DC level is then applied to the threshold detection amplifier of IC802B via CR801.

In the 150 Hz channel the bandpass filter output is applied to Q802, the corresponding FET switch, and CR803, the detector diode. The detected DC level from CR803 is applied to the threshold detection amplifier via CR804.

When the detected negative DC level from either glideslope channel reduces the bias on Pin 6 of IC802B below the threshold level as determined by R828 (Approximately 4.8 volts) the output of IC802B is driven to approximately +9VDC. This action turns-on both FET switches and applies a control signal to the glideslope lamp circuitry.

R832, the Glideslope Balance Adjust, in the drain circuit path of Q802, is used to equalize the glideslope output signals applied to the glideslope low-pass amplifiers.

G. Glideslope Low-Pass Amplifiers (THETA) 400 Only)-The low-pass amplifiers of IC803A and IC803B amplify the glideslope signals and apply them to the metering and lamp circuits. IC803A and associated circuitry is the 90 Hz lowpass amplifier whle IC803B and associated circuitry comprise the 150 Hz low-pass amplifier.

C804 affit R811 is for constiputational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

IC803B are used to rolloff noise on the copyright © 2007, Genave NRC, Inc., all rights reserved. of IC803B are used to rolloff noise on the glideslope signal.

H. Glideslope Metering Circuitry (THETA/ 400 Only)—The glideslope metering circuitry converts the directional signals from the low-pass amplifiers to an UP-DOWN visual indication, which is displayed on M2 the glideslope indicator.

The low-pass amplifier outputs are rectified by means of CR802 and CR805. CR802 functions as a positive half-wave rectifier while CR805 functions as a negative half-wave rectifier.

The rectifier outputs, varying DC levels, are summed and applied to a low-pass active filter comprised of IC804B, C806, and R814. The cutoff frequency of the low-pass filter is 1 Hz (RC = 1 sec.) and thus the meter is prevented from responding to transients. The low-pass active filter inverts the summed input signals.

The low-pass active filter output is applied to the meter driver circuitry of IC804A. If the filter output is negative, current will flow from the output of IC804A into the meter. If the filter output is positive, current will flow into the output of IC804A and therefore out of the meter. This action will cause current flow through the meter and therefore a meter deflection.

R822, the Glideslope DC Balance control, sets the DC level on Pin 3 of IC804A, therefore adjusting the relative positive and negative levels necessary to cause meter deflection.

I. Glideslope Lamp Circuitry (THETA/400 Only)—The OFF lamp is preferentially biased on by means of the application of +5 VDC to Pin 2 of IC802A which causes its output to draw current through Q804 and Q805 thereby turning-on Q805 and its associated lamp.

When an adequate glideslope signal is obtained by the glideslope threshold detection circuit a positive control voltage is applied to Pin 3 of IC802A. This positive control voltage causes current to flow through Q803 thereby illuminating the ON lamp.

J. Regulated Power Supply-All circuitry within the THETA/300 and THETA/400 converter-indicators are operated from the internal regulated power supply consisting of Q101, IC211B, IC207A, and associated circuitry. CR102 determines the reference voltage of IC211B. The output level of the regulator, 10.00VDC, is set by R106, which determines the other input of the differential amplifier, IC211B. The differential amplifier applies regulating current to Q101. R102 is

ing Q101 to operate well within its dissipation characteristics.

IC207A functions as a shunt regulator to provide the +5 VDC output. The output level of this regulator is set by R108 and R109.

CR109, although not a direct part of the regulated supply, limits the maximum input to the supply to about 20 volts. This protects the supply from over-voltage spikes on the input line.

4-3. TEST EQUIPMENT REQUIRED

- a. Genave ALPHA/600 Nav/Com Transceiver
- b. Genave Glideslope Receiver (THETA/400 Alignment Only)
- c. Nav/Com Generator or Simulator Tel-Instruments T-12A with T-12-1A Head or ARC H-14 or Equivalent
- d. Glideslope Generator or Simulator Tel-Instrument T-12A with T-12-2A Head or Equivalent (For G/S alignment)
- e. Power Supply 14.00 VDC @ 3 amps, filtered
- f. VOM

4-4. **ALIGNMENT PROCEDURES**

General

- 1. Connect an accurate VOM or VTVM to the output of the regulated 10.0 VDC power supply.
- 2. Adjust R107, 10.0 VDC ADJUST, for an outoutput of 10.0 VDC.
- A. Omni Alignment
 - 1. Connect the converter-indicator to the Alignment and Test Setup shown in figure 4-4-2.
 - Connect an ohmmeter between TP-1 and TP-2 (270° and wiper terminals of OBS pot). See figure 4-4-4.
 - 3. Set the ohmmeter to Rx1 and adjust the OBS knob to produce a minimum resistance reading. The resistance will be less than 10 ohms. The minimum should occur within $\frac{1}{2}$ degree of the 270° mark on the OBS dial. If it is further off than this, loosen the set screw in the

- to 270° with a minimum resistance aread-nave/NRC, Inc., all Phase Shirt. Pot. (R212) for one-half the indicated error if any.

 screw. Disconnect the ohmmeter.
 - 4. Set the Omni/Localizer simulator to a convenient Omni frequency. Adjust the
 - RF output to 1000 microvolts. Set the course selector for Omni modulation at 90° . Adjust modulation of the carrier to the proper level.
 - 5. Turn-on the Nav/Com receiver. Tune the radio to the frequency selected in step 4. Set the OBS dial to 90°.
 - Adjust Omni/Loc Simulator to remove Omni modulation from the carrier. Adjust DC Balance Pot (R256) for a centered needle indication on the meter.
 - 7. Adjust Omni/Loc Simulator to 500 microvolts of output and 60% modulation.
 - 8. Delete the 30 Hz modulation and adjust the FM Balance Pot (R227) for a centered needle.
 - Reapply the 30 Hz modulation and delete the 9960 Hz modulation. Adjust the AM Balance control (R242) for a centered needle. (It may be necessary to increase Omni/Loc Simulator output level to 2000 microvolts to obtain a steady needle indication.)
 - 10. Reapply the 9960 Hz and 30 Hz modulation and adjust the Phase Correct Pot (R208) to center the indicator needle.
 - 11. With 90° still set on the OBS dial, adjust the Omni/Loc Simulator to produce 270° modulation. Adjust the Phase Correct Pot. (R208) for one-half the indicated error.
 - 12. Adjust the OBS dial to read 270° and adjust the Phase Correct Pot. (R208) to reduce the indicated error by one-half.
 - 13. Set OBS dial and Omni/Loc Simulator to 0° and adjust the Phase Shift Pot. (R212) for a centered needle indication.
 - Set the Omni/Loc Simulator to 180° modulation and adjust the Phase Shift Pot.
 (R212) to reduce the indicated error by one-half.

- 16. Check each 45° point and adjust the Phase Shift or Phase Correct Pots as necessary to obtain optimum accuracy.
- 17. Set Omni/Loc Simulator to any heading and OBS dial to 0°. Depress OBS TEST knob and adjust the Test Adjust Pot. (R231) for a centered needle.

B. Localizer Alignment

- Adjust Omni/Loc Simulator to produce localizer modulation on an appropriate localizer frequency. Set Omni/Loc Simulator to 0 db modulation at 500 microvolts. Adjust Nav receiver to same localizer channel as Simulator.
- 2. Adjust Localizer Balance Pot. (R267) for a centered Needle indication.
- Set Localizer Simulator to +4 db and adjust the Localizer Sensitivity Pot. (R204) to produce a 3-dot deflection of the indicator needle.
- 4. Recheck centering at 0 db modulation.
- 5. Verify 3-dot deflections at both +4 db and -4 db modulation levels.
- C. Glideslope Alignment (THETA/400 Only)
 - Connect glideslope receiver to Glideslope Simulator.
 - 2. Adjust Glideslope simulator to produce an unmodulated 1,000 microvolt signal on an appropriate glideslope frequency.
 - 3. Set Nav receiver to the appropriate paired localizer frequency (This action selects the proper glideslope receiver frequency.).
 - 4. Adjust the Glideslope DC Balance Pot. (R822) to center the glideslope needle.
 - 5. Adjust the Glideslope Simulator to apply 0 db glideslope modulation to the 1,000 microvolt signal and adjust the Glideslope Centering Pot. (R832) to center the glideslope needle.
 - 6. Set the Glideslope Simulator modulation to -2 db and adjust the Glideslope Gain Pot. (R800) to produce a 2-dot deflection of the indicator needle.

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

THETA/300—400 Section IV, Page 5

7. Recheck the glideslope centering at 0.db accuracy and complete wifty 2-doto-deflection seater better not quasinteed or warranted.

This manual is for educational purposes only. The accuracy and complete wifty 2-doto-deflection seater better not quasinteed or warranted.

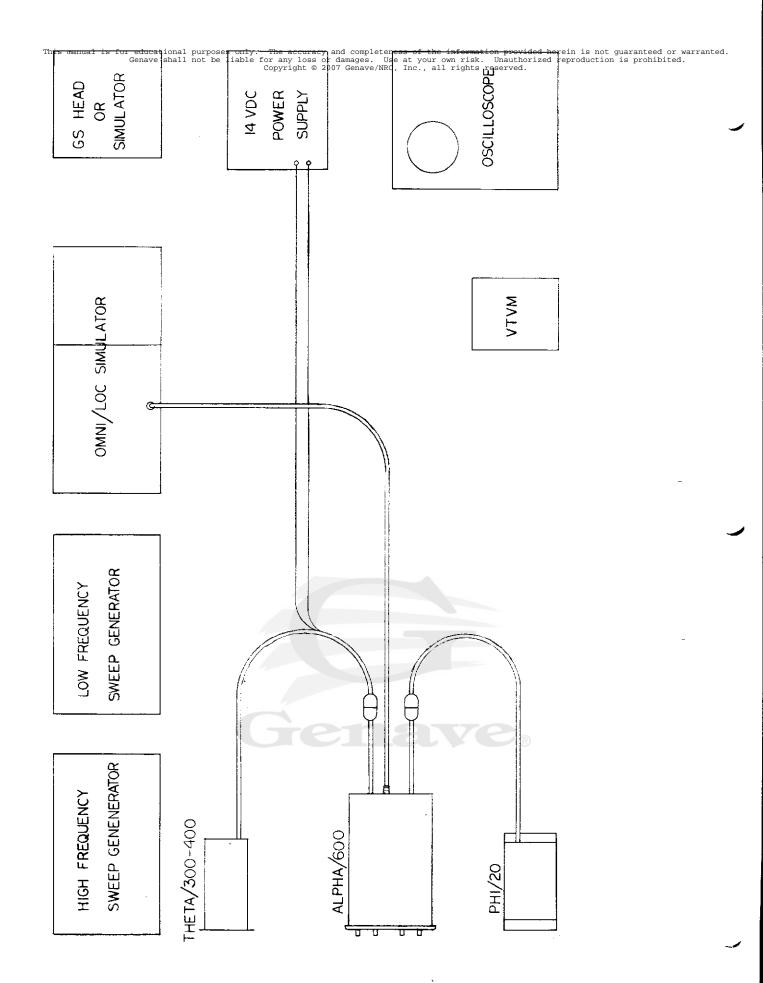
Modulation. Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

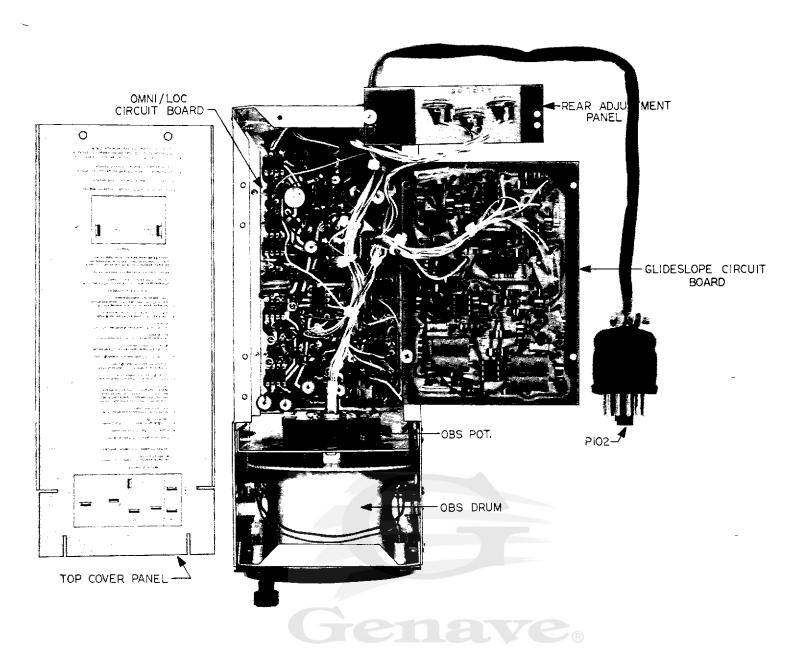
Copyright © 2007 Genave/and Inc. 2 ador modulation levels.

SPECIALIZED PROCEDURES

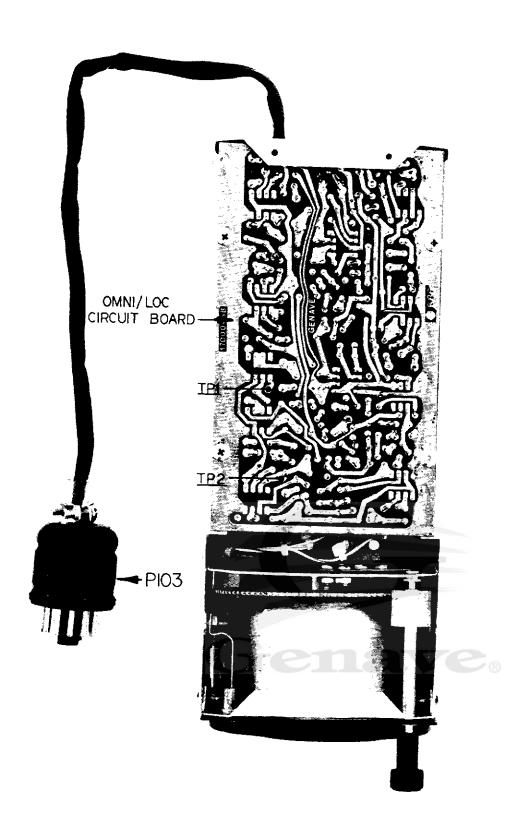
- A. Indicator Lamp Replacement—The "To-Off-From" lamps, the G/S "Off-On" lamps (THETA/400 only), and the meter backlights are designed for field replacement. To perform a field replacement proceed as follows:
- 1. Remove top and bottom converter-indicator panels.
- 2. Remove setscrews from OBS-TEST knob and remove OBS-TEST knob from OBS drive shaft.
- 3. Remove the four (4) meter assembly retaining screws in the side panels and remove the meter head assembly. The OBS shaft will become detached from the unit. Be careful not to lose any of the OBS shaft spacers or bearings.
- 4. To replace the defective lamp it is only necessary to unsolder the defective lamp's leads from the meter terminal board, remove the old lamp from its holder, press a new lamp into the holder, and resolder the new lamp leads to the appropriate points on the meter terminal board (See Figure 4-4-7).
- 5. To reassemble, reverse steps 1, 2, and 3 above.
- B. Meter Assembly Removal—The meters within the meter assembly are not recommended for field repair and replacement is the suggested repair

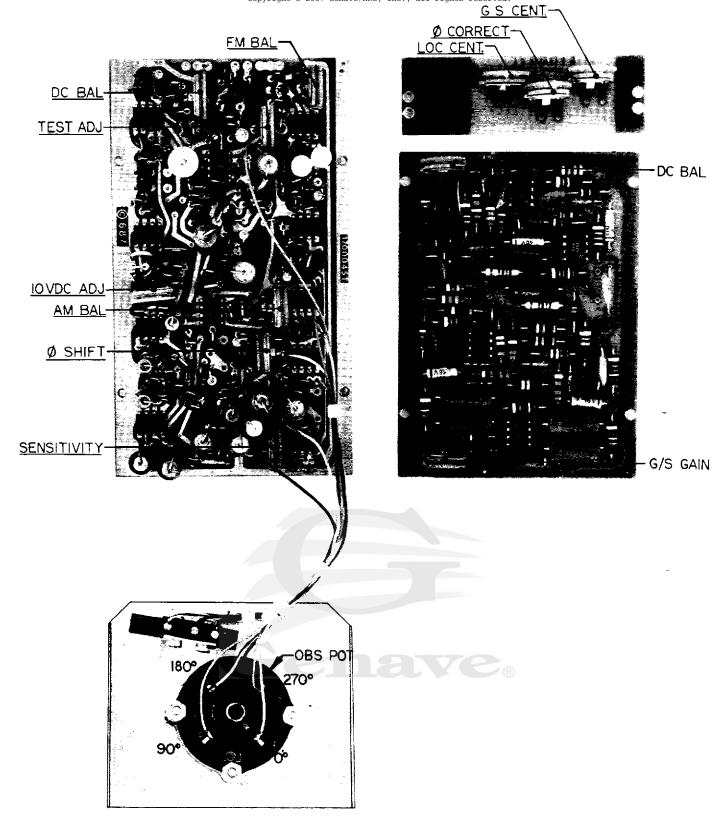
method. To remove the meter assembly so that it may be returned to the factory proceed as follows:

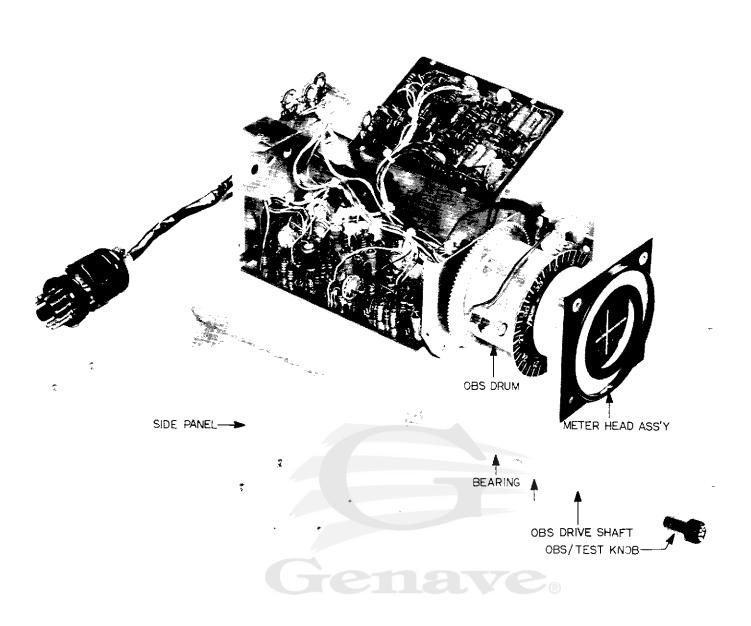

- 1. Remove top and bottom converter-indicator panels.
- 2. Remove setscrews from OBS/TEST knob and remove OBS/TEST knob from OBS shaft.
- 3. Remove the four (4) meter assembly retaining screws in the side panels and remove the meter head assembly. The OBS shaft will become detached from the unit. Be careful not to lose any of the OBS shaft spacers or bearings.
- 4. Unsolder the leads from the meter terminal board.
- 5. Press the front OBS shaft bearing out of the converter-indicator front panel.
 - CAUTION: Breaking the seal between the meter housing and the dial lense may allow dust particles to enter the meter cavity and promote future meter failure.
- 6. To install a new meter head assembly reverse the above steps. When reassembling be sure that the insulating washer is reinstalled between the OBS drum and meter head assembly and that no slack exists in the meter head assembly leads between the back of the meter head assembly and the OBS drum.

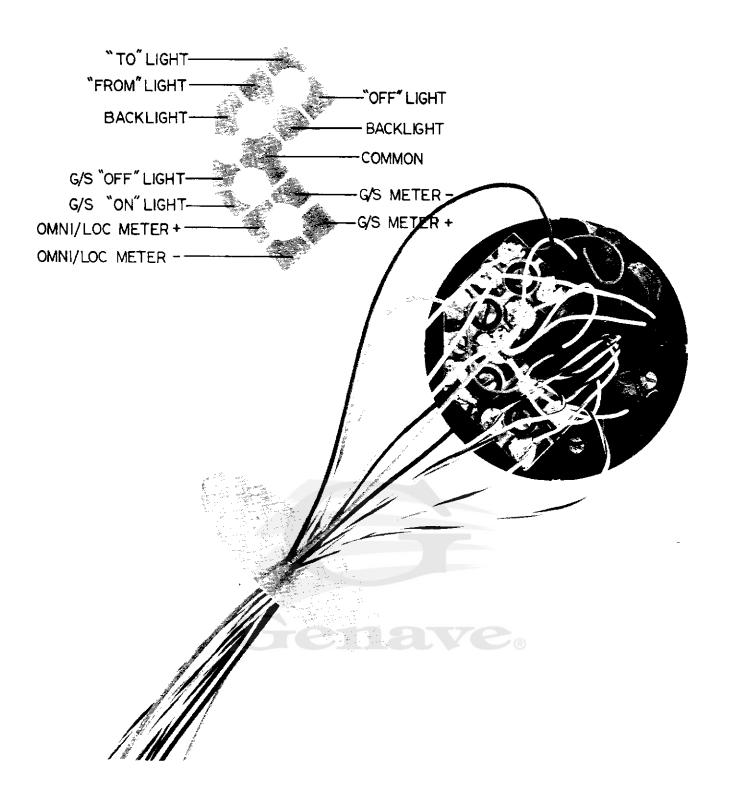

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.


Copyright © 2007 Genave/NRC, Inc. All rights reserved.


OMNI/LOC INPUI





THETA/300-400

4-5. TROUBLESHOOLING all FORMATION was confident to the accuracy and completeness of the information provided herein is not guaranteed or warranted. The accuracy and completeness of the information provided herein is not guaranteed or warranted. The accuracy and completeness of the information provided herein is not guaranteed or warranted. Copyright © 2007 Genave/NRC, inc., all sights reserved.

A. General

It is assumed that the technician performing any troubleshooting or repair work on the unit is familiar with the principles of aviation electronics and the procedures of troubleshooting solid-state electronic equipment. It is further assumed that he has a working knowledge of transistorized circuitry and the use of all the normal test equipment found in the field.

The primary aids to troubleshooting the unit are the DC Voltage Measurements given in figure 4-5-1; the Omni Waveforms given in figures 4-5-2 through 4-5-13; the Localizer Waveforms given in figures 4-5-14 through 4-5-18; the Glideslope Waveforms given in figures 4-5-19 through 4-5-23; the Schematic Diagrams of figures 4-5-24 and 4-5-25; the Omni/Loc Board Parts/Track Map, figure 4-5-26; and the Glideslope Board Parts/Track Map, figure 4-5-27.

- DC Voltage Measurements
 4-5-1 DC Voltage Measurements
- Waveform Photos
 4-5-2 through 4-5-13 Omni Waveforms
 4-5-14 through 4-5-18 Localizer Waveforms
 4-5-19 through 4-5-23 Glideslope Waveforms
- 3. Schematic Diagrams
 - 4-5-24 THETA/300-400 Omni/Loc Board Schematic
 - 4-5-25 THETA/400 Glideslope Board Schematic
- 4. Parts/Track Maps
 - 4-5-26 THETA/300-400 Omni/Loc Board Parts/Track Map
 - 4-5-27 THETA/400 Glideslope Board Parts/ Track Map

DC VOLTAGE MEASUREMENTS

All voltages shown in this table must be measured with a VTVM. The input voltage to the converter-indicator should be set at 13.75 VDC and the 10.00 VDC supply should be set to 10.00 VDC. A variation of $\pm 20\%$ of the measured volt-

ages from those listed may be considered normal. All measurements were taken with a 500 microvolt signal on appropriate frequency with Omni "TO" modulation except as noted.

Ref.		_		Pin.	No.				
No. IC201	5.0	5.0	3 5.0	4	5	6		8	Notes
IC202	$\frac{5.0}{5.0}$	5.0		0	5.0	5.0	5.0	10.0	
IC202	$\frac{5.0}{5.0}$	5.0	5.0	0	5.0	5.0	5.0	10.0	
IC203	5.0	5.0 5.0	5.0	0	5.0	5.0	5.0	10.0	
IC204 IC205	$\frac{5.0}{5.0}$		5.0	0	5.0	5.0	5.0	10.0	
IC206	$\frac{5.0}{5.0}$	5.0 5.0	5.0	0	5.0	5.0	5.0	10.0	
IC207	$\frac{5.0}{5.0}$	$\frac{5.0}{5.0}$	5.0	0	5.0	5.0	5.0	10.0	Localizer Centering Modulation
10201	5.0	5.0	5.0 5.0	0	5.0	5.0	0.5	10.0	
IC208	$\frac{5.0}{5.0}$	$\frac{5.0}{5.0}$			5.0	4.5	9.0	10.0	Localizer Centering Modulation
IC208			5.0	0	5.0	5.0	5.0	10.0	
IC210	5.0	5.0	5.0	0	5.0	5.0	5.0	10.0	
10210	11.0	5.0	6.2	0	5.0	6.2	0.2	12.5	
	0.2	5.0	5.0	0	5.0	5.0	11.0	12.5	Omni "From" Modulation
IC211	0.2	5.0	3.8	0	5.0	3.8	0.2	12.5	Omni Modulation Deleted
ICZII	0.2	10.6	5.0	0	4.3	4.3	11.7	12.5	
	11.0	0	5.0	0	4.3	4.3	11.7	12.5	Omni "From" Modulation
70001	0.2	10.6	5.0	0	4.3	4.3	11.7	12.5	Omni Modulation Deleted
IC801	5.0	5.0	5.0	0	5.0	4.5	9.0	10.0	Glideslope Centering Modulation
Ref. No.	E		В	c					Notes
Q203	6.8	4	.7	10.0					igores
	5.0	5	0.0	10.0	3/	7			Omni Modulation Deleted
	4.2	4	.8	10.0					Omni "From" Modulation
Q204	5.5	4	.8	0					-
	5.0	5	0.0	0		_			Omni Modulation Deleted
	3.5	4	.8	. 0				-	Omni "From" Modulation
Q205	0	0	.8	0					
	0		0	8.7	1				Omni Modulation Deleted
	0		0	8.7	76				Omni "From" Modulation
Q206	0		0	8.7					- CR
	0	0	.8	0				· · · · · · · · · · · · · · · · · · ·	Omni Modulation Deleted
	0		0	8.7					Omni "From" Modulation
Q207	0		0	8.7					
	0		0	8.7				•	Omni Modulation Deleted
	0		.8	0	*		_ -		Omni "From" Modulation
Q101	12.5	11	.7	10.0					
Q803	0		0	8.8					
	0	0	.8	0			_		Glideslope Centering Modulation
Q804	1.2	0	.5	0.8					
	8.8	8	.5	0					Glideslope Centering Modulation
Q805	0		.8	0	<u></u>		•	-	Transfer of the state of the st
G009	•	0							

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

Omni Waveforms

The OMNI waveform photographs were taken un-

der the following conditions: Frequency: Any Omni channel RF Input: 500 microvolts Modulation: Standard Omni 0°

OBS Pot: Set at 0° (except for figure 4-5-7) Horizontal Sweep: 30 Hz reference modulation

from Omni generator.

Localizer Waveforms

The Localizer waveform photographs were taken

under the following conditions: Frequency: Any Localizer channel

RF Input: 500 Microvolts

Modulation: Standard Localizer centering signal,

except as noted.

Glideslope Waveforms

The glideslope waveform photographs were taken

under the following conditions: Frequency: Any Glideslope channel

RF Input: 500 microvolts

Modulation: Standard Localizer centering signal,

except as noted.

OMNI WAVEFORMS

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc., all rights reserved.

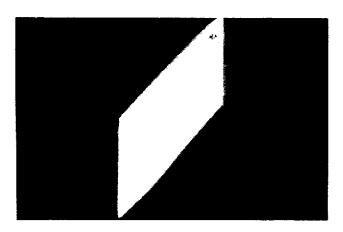


Figure 4-5-2 OMNI INPUT, IC201A Pin 1

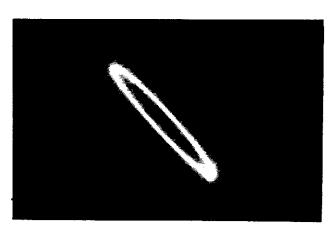


Figure 4-5-3 LOW PASS ACTIVE FILTER OUTPUT, IC201B Pin 7

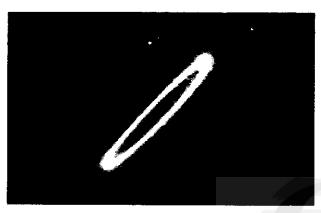


Figure 4-5-4 1st UNITY GAIN PHASE INVERTER OUTPUT, IC202A Pin 1

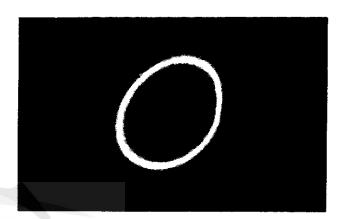


Figure 4-5-5 UNITY GAIN AMPLIFIER OUTPUT IC202B Pin 7

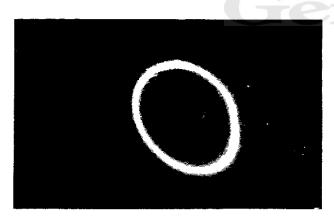


Figure 4-5-6

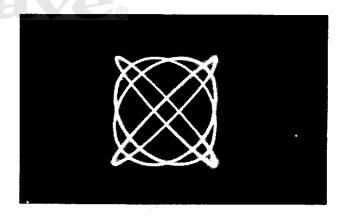


Figure 4-5-7

2nd UNITY GAIN PHASE INVERTER

OBS OUTPUT AT 0°, 90°, 180°,
This manual OUTPUT at IC203Assesing The accuracy and completeness of the informat AND v270° reilG203BuaPinee7 or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

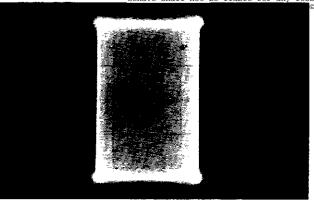


Figure 4-5-8
9960 Hz AMP/LIMITER OUTPUT
IC204A Pin 1

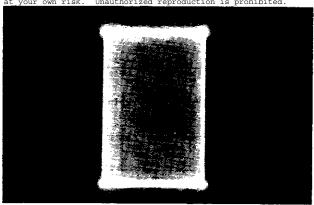


Figure 4-5-9
SCHMITT TRIGGER OUTPUT
IC204B Pin 7

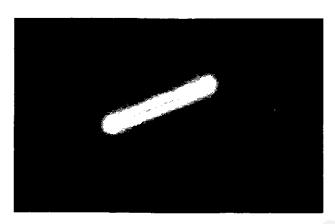


Figure 4-5-10
30 Hz ACTIVE BANDPASS FILTER
OUTPUT, IC205A Pin 1

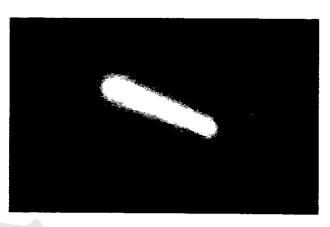


Figure 4-5-11
VARIABLE GAIN INVERTING AMP
OUTPUT, IC205B Pin 7

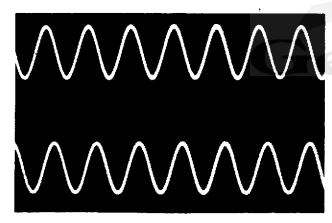


Figure 4-5-12 LOW-PASS AMPLIFIER OUTPUTS BALANCED, IC208 Pins 1 & 7

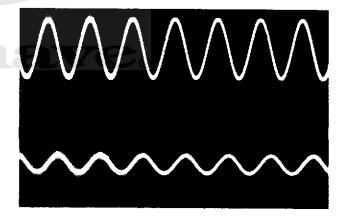


Figure 4-5-13
LOW-PASS AMPLIFIER OUTPUTS
UNBALANCED 1C208 PINS 1 & 7

LOCALIZER WAVEFORMS

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc., all rights reserved.

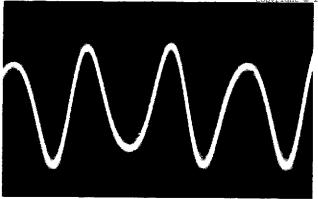


Figure 4-5-14
90Hz BANDPASS AMPLIFIER
OUTPUT, IC2G6A Pin 1

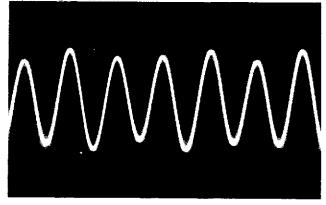


Figure 4-5-15 150 Hz BANDPASS AMPLIFIER OUTPUT, IC206B Pin 7

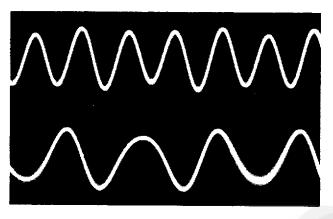


Figure 4-5-16
LOW-PASS AMPLIFIER OUTPUTS
BALANCED, IC208 Pins 1 & 7

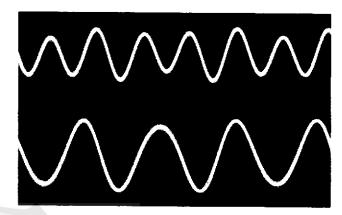


Figure 4-5-17
LOW-PASS AMPLIFIER OUTPUTS
UNBALANCED --4 db, IC208 Pins 1 & 7

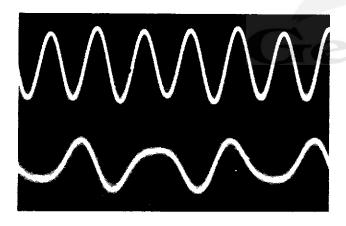


Figure 4-5-18
LOW-PASS AMPLIFIER OUTPUTS
UNBALANCED +4 db, IC208 Pins 1 & 7

GLIDESLOPE WAVEFORMS

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc., all rights reserved.

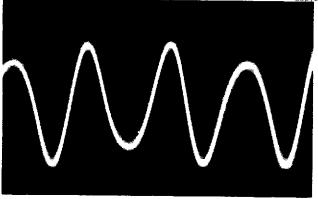


Figure 4-5-19
90 Hz BAND-PASS AMPLIFIER
OUTPUT, IC801A Pin 1

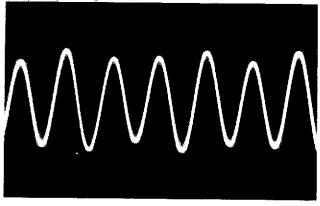


Figure 4-5-20 150 Hz BAND-PASS AMPLIFIER OUTPUT, IC801B Pin 7

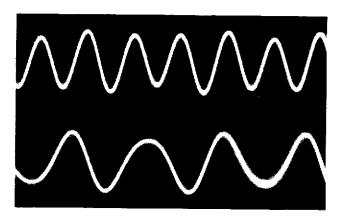


Figure 4-5-21 LOW-PASS AMPLIFIER OUTPUTS BALANCED, IC803 Pins 1 & 7

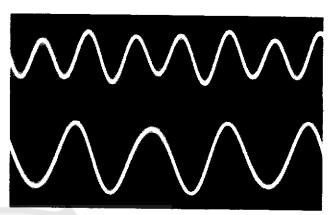


Figure 4-5-22
LOW-PASS AMPLIFIER OUTPUTS
UNBALANCED —4 db, IC803 Pins 1 & 7

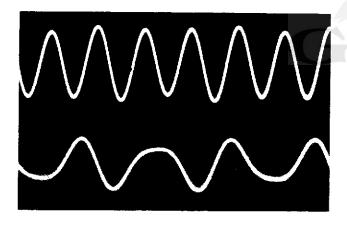
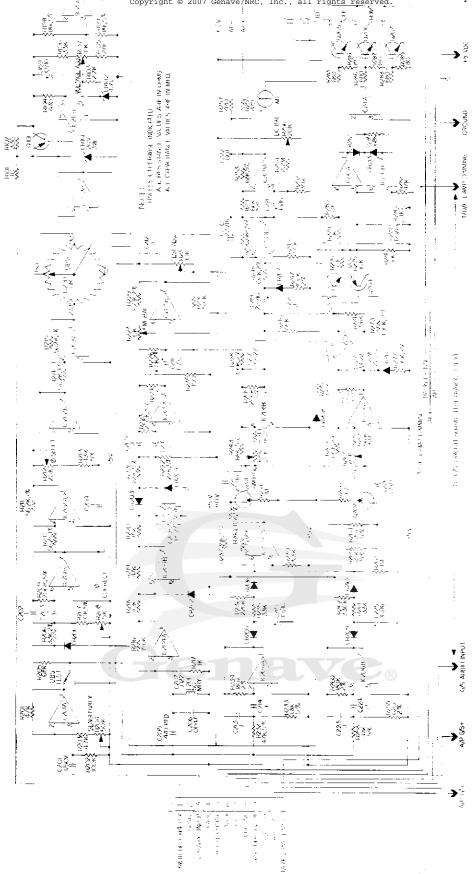



Figure 4-5-23
LOW-PASS AMPLIFIER OUTPUTS
UNBALANCED +4 db, IC803 Pins 1 & 7

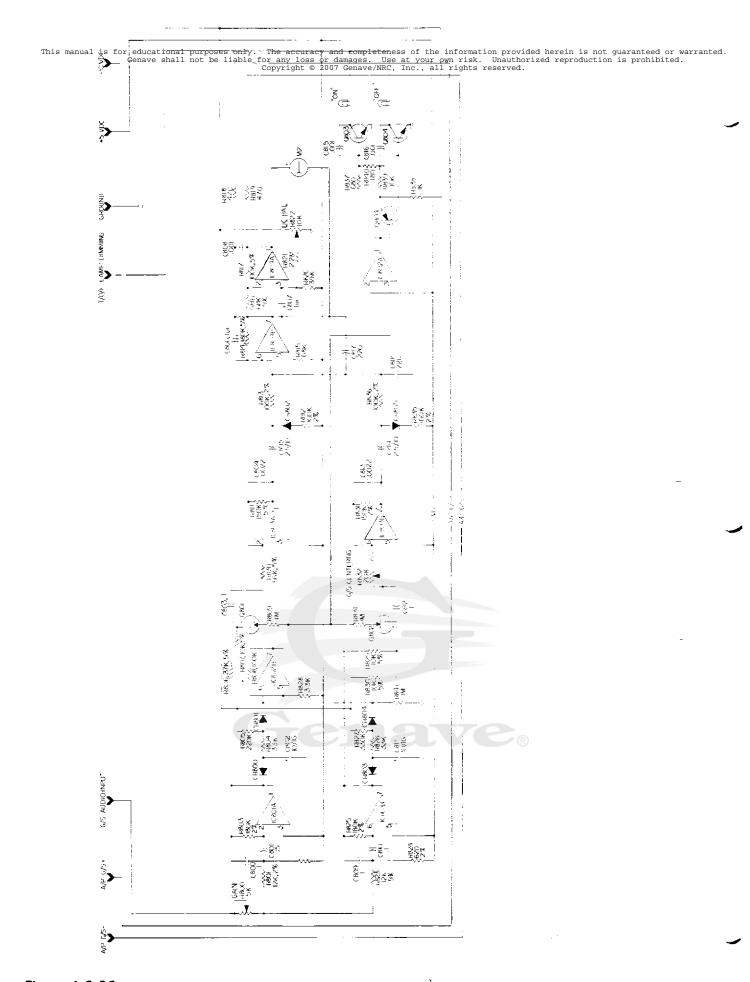
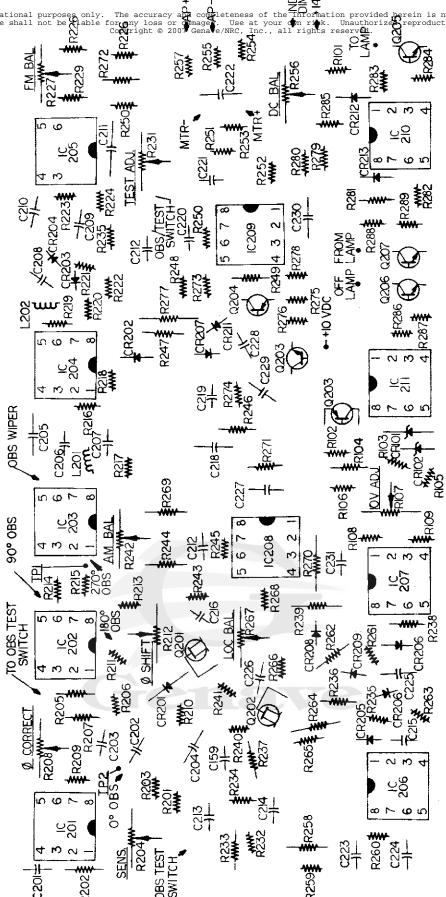



Figure 4-5-25 or educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted. THETA/400 GLIDESCOPE Copyright © 2007 Genave/NRC, Inc. All rights reserved. **BOARD SCHEMATIC**

This manual is for educational purposes only. The accuracy and completeness of the information provided herein Figure 4.5-26 or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized TAY 300 1400 MNI/LOC

Copyright © 2007 Genave/NRC, Inc. All rights reserved HETA/ 300 1400 MNI/LOC **BOARD PARTS/TRACK MAP** THETA/300-400

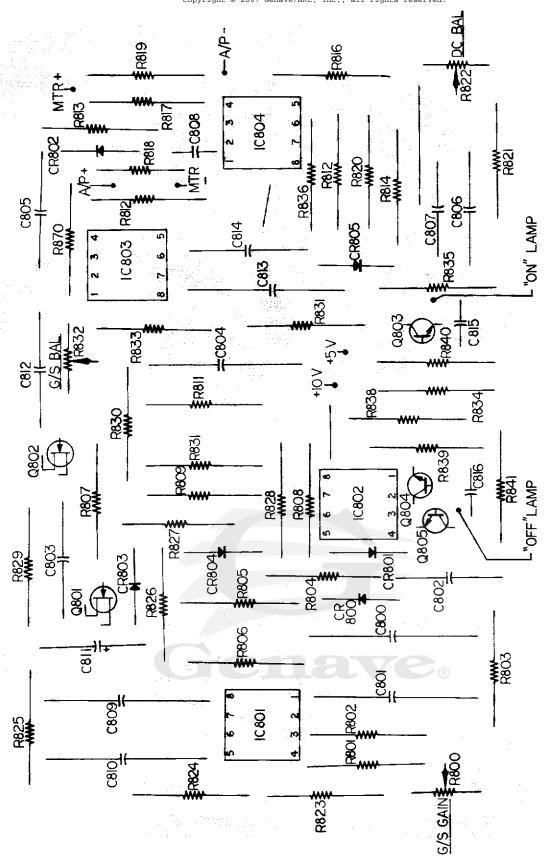


Figure 4-5-27 educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted. THETA/400 GLIDESLOPE

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

THETA/300 PARTS LIST

Ref. No.	Genave Part No.	DESCRIPTION	Ref. No.	Genave Part No.	DESCRIPTION
		CAPACITORS	Q203	4800033	Silicon, NPN, MPS-5172 Silicon, PNP, Black, 2N5227
		Tantalum, 1 mfd, ±20%, 35V	Q204 Q295	4800043 4800042	Silicon, NPN, 2N5220
C201 C202	1550002 150003 9	Mylar, 0.1 mfd, ±5%	9206	4800042 4800042	Silicon, NPN, 2N5220 Silicon, NPN, 2N5220
C203	1500039	Mylar, 0.1 mfd, ±5% Metalized Polyycarb, 1 mfd, ±5%	Q.297	4000042	Sillosit, At 14 2-10-15
C204 C205	1500060 1520040	255 Diec 470 ofd +10%			RESISTORS
C206	1500012	Mular 1047 mfd +10%			
C207 C208	1500024 1500011	Mylar, 0.022 mfd, ±10% Mylar, .0027 mfd, ±10%	R101	4700003	10 ohm, ½W, 10% 330 ohm, ½W, 10%
C209	1500039	Mylar, 0.1 mfd, ±5%	R102 R103	4700019 4700029	2.2K, ½W, 10%
C210 C211	1500039 1540014	Mylar, 0.1 mfd, ±5% Electrolytic, 10 mfd, 16V	R104	4700042	Unassigned 27K, ½W, 10%
C212	1500039	Mylar, 0.1 mfd, ±5%	R105 R106	4700042 4700043	33K, ½W, 10%
C213 C214	1500039 1500039	Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5%	R107	4760019	Trimmer, 10K
C215	1540014	Electrolytic, 10 mfd, 15V	R108 R109	4720029 4720029	18K, ½W, 10% 18K, ½W, 10%
C216	1540005	Electrolytic, 2.5 mfd, 16V Mylar, .0022 mfd, ±10%	R110		Unassigned
C217 C218	1500008 1500039	Mylar, 0.1 mfd ±5%	R291 R292	4700045 4700049	47K, ½W, 10% 100K, ½W, 10%
C219	1540005	Electrolytic, 2.5 mfd, 16V Electrolytic, 2.5 mfd, 16V	R293	4700033	4.7K, ½W, 10%
C220 C221	1540005 1540014	Electrolytic, 10 mfd, 16V	R204 R205	4760021 4720038	Trimmer, 50K 68K, ½W, 5%
C222	1520048	Z5F Disc, 1000 pfd, ±20%	R205	4720031	33K, ½W, 5%
C223 C224	1500039 1500039	Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5%	R267	4720027 4760018	10K, ½W, 5% Trimmer, 5K
C225	1540014	Electrolytic, 10 mfd, 16V	R288 R208	4760018 4720042	200K, ½W, 5% Precision, 56.2K, ½W, 1%
C226 C227	1540005 1500008	Electrolytic, 2.5 mfd, 16V Mylar, .0022 mfd, ±10%	R210	4720078	Precision 56.2K, 1/2W, 1%
C228 C229	1540005	Electrolytic, 2.5 mfd, 16V	R211 R212	4720078 4760020	Trimmer, 20K
C229	1500039	Mylar, 0.1 mfd, ±5% Electrolytic, 125 mfd, 16V	R213	4720033	Trimmer, 20K 43K, ½W, 5%
C230 C231	1540024 1540014	Electrolytic, 10 mfd, 16V	R214 R215	4720078 4720078	Precision, 56.2K, ½W, 1% Precision, 56.2K, ½W, 1%
C232	1540046	Electrolytic, 47 mfd, 25V	R216	4700051	150K, ½W, 10%
C233 C234		Unassigned Unassigned	R217	4700025 4700037	1K, ½W, 10% 10K, ½W, 5%
425-			R218 R219	4700045	47K, 1/2W, 10%
		DIODES	R229	4700039	15K, ½W, 10% 22K, ½W, 5%
00404	4010010	Zener, 20V, ±20%, 3W, 1N5357	R221 R222	4720030 4720030	22K, ½W, 5%
CR191 CR192	4810010 4810024	Zener, 4.7V, ±10%, 1W	R223	4720042	200K, ½W, 5% 1K, ½W, 10%
CR193		Unassigned	R224 R225	4700025 4700013	100 ohm, ½w, 10%
CR291 CR292	4810017 4810017	High Frequency Switching, FD1936 High Frequency Switching, FD1936	R226	4720021	Precision, 100K, ¼W, 2%
CR293	4810017	High Frequency Switching, FD1936	R227 R228	4760019 4720021	Trimmer, 10K Precision, 100K, ¼W, 2%
CR284 CR285	4810017 4810017	High Frequency Switching, FD1936 High Frequency Switching, FD1936	R229	4720021	Precision, 100K, ¼W, 2%
ÇR206	4810017	High Frequency Switching, FD1936	R230 R231	4700034 4720019	5.6K, ½W, 10% Trimmer, 10K
CR207 CR208	4810017 4810017	High Frequency Switching, FD1936 High Frequency Switching, FD1936	R232	4720034	47K, ½W, 5%
CR209	4810017	High Frequency Switching, FD1936	R233	4720018	1.8K, ½W, 10% Precision, 180K, ½W, 2%
CR210	4810017 4810017	High Frequency Switching, FD1936 High Frequency Switching, FD1936	R234 R235	4720023 4700043	33K, ½W, 10%
CR211 CR212	4810017	High Frequency Switching, FD1936	R236	4700053	33K, ½W, 10% 220K, ½W, 10%
CR213	4810017	High Frequency Switching, FD1936 Unassigned	R237 R238	4700032 4700047	39K, ½W, 10% 68K, ½W, 10%
CR214		Ullassigned	R239	4700031	3.3K, ½W, 10%
		LAMPS '	R240 R241	4720027 4700058	10K, ½W, 5% 1 Meg, ½W, 10%
			R242	4760020	Trimmer, 20K
DS101 DS102	3900004 3900004	Backlight, 14V, 80ma, Lunar White Backlight, 14V, 80ma, Lunar White	R243 R244	4720038 4720020	68K, ½W, 5% Precision, 91K, ¼W, 2%
D\$2 8 1	3900016	Indicator Lamp, Brown Lead, 14V, 80ma, Clear	R245	4720042	200K, ½W, 5%
D \$292 D \$203	3900017 3900018	Indicator Lamp, Red Lead, 14V, 80ma, Clear Indicator Lamp, Green Lead, 14V, 80ma, Clear	R246	4700046	56K, ½W, 10% Precision, 100K, ¼W, 2%
DS204	3900024	Backlight, 14V, 80ma, Lunar White	R247 R248	4720021 4720021	Precision, 100K, ¼W, 2%
			R249	4700051	150K, ½W, 10%
		COILS	R250 R251	4720038 4720038	68K, ½W, 5% 68K, ½W, 5%
L201	1800033	50 mhy, Choke	R252	4700044	39K, 42W, 10% 68K, 42W, 5%
L202	1800033	50 mhy, Choke	R253 R254	4720038 4700060	58K, ½W, 5% 2.2 Meg 1/3W 10%
			R255	4700021	2.2 Meg., ½W, 10% 470 ohm, ½W, 10%
		INTEGRATED CIRCUITS	R256 R257	4760020 4720021	Trimmer, 20K 470 ohm, ½W, 10%
IC281	3130012	Dual Op-Amp, MC1458P1	R258	4720034	47K, 1/2W, 5%
IC202	3130012	Duai Op-Amp, MC1458P1	R259	4720024	Precision, 620 ohm, 1/4W, 2% Precision, 180K, 1/2W, 2%
IC293 IC204	3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	R260 R261	4720023 4700043	33K, ½W, 10%
IC205	3130012	Dual Op-Amp, MC1458P1	R262	4700055	330K, 16W, 10%
IC206 IC207	3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	R263 R264	4700058 4700032	1 Meg., 42W, 10% 39K, 16W, 5%
1 C 208	3130012	Duai Op-Amp, MC1456P1	R265	4720027	1 Meg., ½W, 10% 39K, ½W, 5% 10K, ½W, 5%
IC2 9 9	3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	R266 R267	4700058 4760020	1 Meg., ½W, 10% Trimmer, 20K
IC210 IC211	3130012	Duai Op-Amp, MC1458P1	R268	4720036	56K, ½W, 5%
	_		R269	4720021	Precision, 100K, ¼W, 2%
		TRANSISTORS	R270 R271	4720042	Unassigned 200K, ½W, 5%
Q101	4800023	Silicon, PNP, MPS-U52	R272	4720021	Precision, 100K, 1/2W, 2%
Q201	4805458	Silicon, N-Channel, J-FET, 2N5458 Silicon, N-Channel, J-FET, 2N5458	R273 R274	4720021 4700046	Precision, 100K, ½W, 2% 56K, ½W, 10%
Q2 0 2	4805458	Secon, N-Channel, J-FE1, 2N0408			

Ref. No.	Thenaveual Part No.	is for educational purposes only. The a Genav O5SCRITTION liable for any Copyri	ccuracy and completen Genave the information provided herein is not guaranteed or warranted. loss or dRefy=No. U-Part Nour own risk. U-DESCRIPTION production is prohibited.
R275 R276 R277 R278 R279 R280 R281 R282 R283 R284 R285 R286 R286 R289 R289 R291 R291	4700037 4700037 4700021 4700045 4700025 4700023 4700023 4700016 4700016 4700016 4760011	10K, ½W, 10% 10K, ½W, 10% 10K, ½W, 10% Precision, 100K, ¼W, 2% 47K, ½W, 10% 16K, ½W, 10% 16K, ½W, 10% 16K, ½W, 10% 680 ohm, ½W, 10% 180 ohm, ½W, 10% Unassigned 680 ohm, ½W, 10% 180 ohm, ½W, 10% 190 ohm, ½W, 10%	6070010 Clip, Spring, Lamp 5100048 Switch, OBS Test 2505342-C Panel, Side 2503502-B Cover 2503761-B Panel, Rear 2503761-B Panel, Switch 2501322-A Shaft, Drive 2503602-A Knob, OBS 2504321-B Drum Assembly, OBS 2504321-B Gear, OBS Drum, Large 2504701-A Gear, Spur, Small 2501731-A Spring, Leaf, Test Switch 3510000 Bearing, OBS Drive Shaft 2840015 Grommet, Rubber, 1/4, in. I.D. 2100013 Connector, 12 pin, Maie 2100014 Connector, 12 pin, Maie 2100015 Cover, Connector 6070013 Clamp, Cable 1700039 Printed Grout Board, Meter Lamp Terminal
MIA	2507980	METER Meter Replacement Head Assembly	1700039 Printed Circuit Board, Meter Lamp Terminal 1090400 Manual, Pilots Information, THETA/300 & 400 1090401 Manual, Installation, THETA/300 & 400 1090402 Manual, Maintenance, THETA/300 & 400

Specifications Subject To Change Without Notice

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted.

Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

Section V Page 2 THETA/300—400

This manual is for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or warranted. Genave shall and the latest of all laser of much. It also be a shall and the sproduction is prohibited. Log Luft / 107 and re/NT II all reserved.

Ref. No.	Genave Part No.	DESCRIPTION	Ref. No.	Genave Part No.	DESCRIPTION	
		CAPACITORS			COILS	
G201 G202	1550002 1500039	Tantalum, 1 mfd, ±20%, 35V Mylar, 0.1 mfd, ±5%	L281 L282	1800033 1800033	50 mhy, choke 50 mhy, choke	
C203 C204 C205	1500039 1500060 1520040	Mylar, 0.1 mfd, ±5% Metalized Polycarb, .1 mfd, ±10% Z5F Disc, 470 pfd, ±10%			INTEGRATED CIRCUITS	
C206 C207 C208	1500012 1500024 1500011	Mylar, .0047 mfd, $\pm 10\%$ Mylar, .022 mfd, $\pm 10\%$ Mylar, .0027 mfd, $\pm 10\%$	IG201 IG202	3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	
C209 C210	1500039	Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5%	IC203 IC204	3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	
C211 C212	1500039 1540014 1500039	Electrolytic, 10 mfd, 16V Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5%	IC295 IC206	3130012 3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	
C213 C214 C215	1500039 1500039 1540014	Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5% Electrolytic, 10 mfd, 16Y	1C297 IC298 IC299	3130012 3130012 3130012	Oual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	
C216 C217	1540004 1500008	Electrolytic, 2.5 mtd, 16V Mylar, .0022 mfd, ±10%	{C210 C211	3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	
C218 C219 C220	1500039 1540004 1540004	Mylar, 0.1 mfd, ±5% Electrolytic, 2.5 mfd, 16V Electrolytic, 2.5 mfd, 16V	1C801 1C802 1C883	3130012 3130012 3130012	Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1 Dual Op-Amp, MC1458P1	
C220 C221 C222 C223	1540014 1520048	Electrolytic, 10 mfd, 16V	1C804	3130012	Dual Op-Amp, MC1458P1	
C224	1500039 1500039	Z5P Disc, .001 mfd, ±20% Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5%			TRANSISTORS	
C225 C226 C227	1540014 1540004 1500008	Electrolytic, 10 mfd, 16V Electrolytic, 2.5 mfd, 16V Mylar, .0022 mfd, ±10%	Q101	4800023	Silicon, PNP, MPS-U52 Silicon, N-Channel, J-FET, 2N5458	
C229 C229	1540004 1500039	Electrolytic, 2.5 mfd, 16V Mylar, 0.1 mfd, ±5%	Q201 Q202 Q203	4805458 4805458 4800033	Silicon, N-Channel, J-FET, 2N5458 Silicon, NPN, MPS-5172	
C230 C231 C232	1540024 1540014 1540046	Electrolytic, 125 mfd, 16V Electrolytic, 10 mfd, 16V Electrolytic, 47 mfd, 25V	Q204 Q205	4800043 4800042	Silicon, PNP, Black, 2N5227 Silicon, NPN, 2N5220	
C232 C233 C234	1540046	Unassigned Unassigned	Q206 Q207 Q801	4800042 4800042 4805458	Silicon, NPN, 2N5220 Silicon, NPN, 2N5220 Silicon, N-Channel, J-FET, 2N5458	
C800 C801	1500039 1500039	Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5%	Q882 Q803	4805458 4800042	Silicon, N-Channel, J-FET, 2N5458 Silicon, NPN, 2N5220	
C802 C803 C804	1540014 1520055 1 50000 8	Electrolytic, 10 mfd, 16V Disc, .1 mfd, +80 -20%, 12V Mylar, .0022 mfd, ±10%	Q884 Q805	4800043 4800042	Silicon, PNP, Black, 2N5227 — Silicon, NPN, 2N5220	
C805 C806	1540004 1550002	Electrolytic, 2.5 mfd, 16V Tantalum, 1 mfd, ±20%, 35V			pecieTABC	
C807 C806	1550002 1550002	Tantalum, 1 mfd, ±20%, 35V Tantalum, 1 mfd, ±20%, 35V	R101	4700003	RESISTORS 10 ohm, ½W, 10%	
C809 C810 C811	1500039 1500039 1540014	Mylar, 0.1 mfd, ±5% Mylar, 0.1 mfd, ±5% Electrolytic, 10 mfd, 16V	R182 R183	4700019 4700029	330 ohṁ, ½ŵ, 10% 2.2K, ½W, 10%	
C812 C813	1520055 1500008	Disc, .1 mfd, +80 -20%, 12V Mylar, .0022 mfd, ±10%	R104 R105	4700042	Unassigned 27K, ½W, 10% 22K, 14W, 10%	
C814 C815	1540004	Electrolytic, 2.5 mfd, 16V Unassigned	R106 R107 R108	4760019 4720029	33K, ½W, 10% Trimmer, 10K 18K, ½W, 10%	
C816 C817 C818	1520033 1520033	Unassigned Z5F Disc, 220 pfd, ±10%, 10V Z5F Disc, 220 pfd, ±10%, 10V	R109 R110	4720029	18K, ½W, 10% Unassigned	
C819 C829		Unassigned Unassigned	R201 R202 R293	4700045 4700049 4700033	47K, ½W, 10% 100K, ½W, 10% 4.7K, ½W, 10%	
			R294 R205	4760021 4720038	Trimmer, 50K 68K, ½W, 5% 33K, ½W, 5%	
CR101	4810010	DIODES Zener 20V +20% 3W, 1N5357	R296 R207	4720031 4720027	10K, ½W, 5%	
CR102 CR103	4810024	Zener, 20V ±20%, 3W, 1N5357 Zener, 4.7V, ±10%, 1W Unassigned	R208 R209 R210	4760018 4720042 4720078	Trimmer, 5K 200K, ½W, 5% Precision, 56.2K, ½W, 1%	
CR201 CR202 CR203	4810017 4810017	High Frequency Switching, FD 1936 High Frequency Switching, FD 1936	R211 R212	4720078 4760020	Precision, 56.2K, ½W, 1% Trimmer, 20K	
CR204 CR205	4820017 4810017 4810017	High Frequency Switching, FD 1936 High Frequency Switching, FD 1936 High Frequency Switching, FD 1936	R213 R214 R215	4720033 4720078 4720078	43K, ½W 5% Precision, 56.2K, ½W, 1% Precision, 56.2K, ½W, 1%	
CR206 CR207	4810017 4810017	High Frequency Switching, FD 1936 High Frequency Switching, FD 1936	R216 R217	4700051 4700025	150K, ½W, 10%	
CR208 CR209 CR210	4810017 4810017 4810017	High Frequency Switching, FD 1936 High Frequency Switching, FD 1936 High Frequency Switching, FD 1936	R218 R219 R229	4700037 4700045	1K, ½W, 10% 10K, ½W, 5% 47K, ½W, 10%	
CR211 CR212	4810017 4810017	High Frequency Switching, FD 1936 High Frequency Switching, FD 1936	R221 R222	4700039 4720030 4720030	15K, ½W, 10% 22K, ½W, 5% 22K, ½W, 5%	
CR213 CR214	4810017	High Frequency Switching, FD 1936 Unassigned	R223 R224	4720042 4700025	200K, ½W, 5% 1K, ½W, 10%	
CR890 CR801 CR892	4810017 4810017 4810017	High Frequency Switching, FD 1936 High Frequency Switching, FD 1936 High Frequency Switching, FD 1936	R225 R226 R227	4700013 4720021 4760019	100 ohm, ½W, 10% Precision, 100K, ¼W, 2% Trimmer, 10K	
CR883 CR884	4810017 4810017	High Frequency Switching, FD 1936 High Frequency Switching, FD 1936	R228 R229	4720021 4720021	Precision, 100K, ¼W, 2% Precision, 100K, ¼W, 2%	
CR805 CR806	4810017	High Frequency Switching, FD 1936 Unassigned	R230 R231	4700034 4760019	5.6K, ½W, 10% Trimmer. 10K	
		LAMPS	R232 R233 R234	4720034 4720018 4720023	47K, ½W, 5% 1.8K, ½W, 10% Precision, 180K, ½W, 2%	
DS101	3900004	Back light, 14V, 80ma, Lunar White	R235 R236	4700043 4700053	33K, ½W, 10% 220K, ½W, 10%	
DS182 DS201 DS202	3900004 3900016 3900017	Backlight, 14V, 80ma, Lunar White Indicator lamp, Brn Lead, 14V, 80ma, Clear Indicator lamp, Red Lead, 14V, 80ma, Clear	R237 R238 R239	4700032 4700047 4700031	39K, ½W, 5% 68K, ½W, 10% 3.3K, ½W, 10%	
DS203 DS204	3900018 3900024	Indicator lamp, Grn Lead, 14V, 80ma, Clear Backlight, 14V, 80ma, Lunar White	R24 8 R241	4720027 4700058	10K, ½W, 5% 1 Meg., ½W, 10%	
DS801 DS802	3900015 3900019	Indicator lamp, Blk Lead, 14V, 80ma, Clear Indicator lamp, Yel Lead, 14V, 80ma, Clear	R242 R243	4760020 4720038	Trimmer, 20K 68K, ½W, 5%	

for educational purposes only. The accuracy and completeness of the information provided herein is not guaranteed or Genave shall not be liable for any loss or damages. Use at your own risk. Unauthorized reproduction is prohibited.

Copyright © 2007 Genave/NRC, Inc. All rights reserved.

Section V Page 3 THETA/300-400

f. No.	Genave Part No.	DESCRIPTION	for any loss or damages. Uscath avoir own risk. Unauthorized reproduction Copyright © 2007 REPARK NRC PARK No. all rights respectively.	is promibited.
244	4720020	Precision, 91K, 1/4W, 2%	R812 4720021 Precision, 100K, 1/4W, 2%	
245	4720042	200K, 1/2W, 5%	R813 Unassigned	
246	4700046	56K, ½W, 10%	R814 4720023 180K, ½W, 5%	
1247	4720021	Precision, 100K, ¼W, 2%	R814 4720023 180K, ½W, 5% R815 4700047 68K, ½W, 10% R816 4720038 68K, ½W, 5%	
248	4720021 4720021	Precision 180K 1/4W 2%	R816 4720038 68K, ½W, 5%	
249	4700051	150K, ½W, 10% 68K, ½W, 5% 68K, ½W, 5%	R817 Unassigned	
250	4720038	68K. 1/2W. 5%	R818 4700021 470 ohm, ½W, 10%	
251	4720038	68K. 1/2W. 5%	R819 4700021 470 ohm, ½W, 10%	
252	4700044	39K, 16W, 10%	R820 Unassigned	
253	4720038 4700060	39K, 1⁄2W, 10% 68K, 1∕2W, 5%	R821 4700060 2.2 Meg., ½W, 10%	
254	4700060	2.2 Meg., ½W, 10% 470 ohm, ½W, 10%	R822 4760019 Trimmer, 10K	
255	4700021	470 ohm. ½W. 10%	R823 4720028 12K, ½W, 5%	
256	4760020	Trimmer, 20K	R824 4720024 Precision, 680 ohm, 1/4W, 2%	
257	4700021	470 ohm, ½W, 10%	R825 4720023 Precision, 180K, 1/2W, 2%	
258	4720034	47K, ½W, 5%	R826 4700043 33K, ½W, 10%	
259	4720024	Precision, 620 ohm, 1/4W, 2%	R827 4700055 330K, ½W, 10%	
260	4720023	Precision, 180K, 1/2W, 2%	R828 4700031 3.3K, ½W, 10%	
261	4700043	33K, 1/2W, 10%	R827 4700055 330K, ½W, 10% R828 4700031 3.3K, ½W, 10% R829 4720032 39K, ½W, 5%	
262	4700055	33K, ½W, 10% 330K, ½W, 10%	R630 Unassigned	
263	4700058	1 Meg., 1/2W, 10%	R831 4700058 1 Meg., ½W, 10%	
264	4700058 4700032	1 Meg., ½W, 10% 39K, ½W, 5%	R832 4760020 Trimmer, 20K	
265	4720027	10K, ½W, 5%	R833 4720032 39K, ½W, 5%	
266	4700058	1 Meg., ½W, 10%		
267	4760020	Trimmer, 20K	R834 4720022 Precision, 150K, ¼W, 2% R835 4720021 Precision, 100K, ¼W, 2%	
268	4720036	56K, ½W, 5%	R836 Unassigned	
269	4720021	Precision, 100K, 1/4W, 2%	R837 4700023 680 ohm, ½W, 10%	
270		Unassigned	R838 4700025 1K, ½W, 10%	
271	4720042	200K, ½W, 5%		
272	4720021	Precision, 100K, ¼W, 2%	R839 4700037 10K, ½W, 10% R846 4700016 180 ohm, ½W, 10%	
273	4720021	Precision, 100K, ¼W, 2%	R841 4700058 1 Meg., 1/2W, 10%	
274	4700046	56K 1/5W 1094	1 Meg., 424, 10%	
275	4700037	10K 1/2W 10%		
276	4700037	56K, ½W, 10% 10K, ½W, 10% 10K, ½W, 10%	METER	
277	4700037 4720021	Precision, 100K, ¼W, 2%	100 m = 1000	
278	4700045	47K 1/2W 10%	M1B 2507990 Meter Replacement Head Assembly	
279	4700025	47K, ½W, 10% 1K, ½W, 10%	Motor replacement rical resembly	
280	4700037	10K, 1/2W, 10%		
281	4700025	1K 1/5W 10%	MISCELLANEOUS	
282	4700045	1K, ½W, 10% 47K, ½W, 10%	MISCELLAREOUS	
283	4700045 4700023	680 ohm, ½W, 10%	6070010 Clip. Spring. Lamp	
284	4700016	180 ohm, ½W, 10%	6070010 Clip, Spring, Lamp 5100048 Switch, OBS Test	
285		Unassigned	2505342-C Panel, Side	
286	4700023	680 ohm, 1/2W, 10%	2503502-B Cover	
287	4700016	180 ohm 1/2W 10%		
288	4700023	680 ohm, ½W, 10%		
89	4700016	180 ohm, ½W, 10%	2503761-B Panel, Switch 2501322-A Shaft, Drive	
290	4760011	Potentiometer, OBS, 10K	2501322-A Shaft, Drive 2503602-A Knob, OBS	_
291		Unassigned	2504321-B Drum Assembly, OBS	_
29 2		Unassigned		
308	4760018	Trimmer, 5K		
81	4760018 4720028	12K, 1/2W, 5%		
62	4720018	Precision, 1.8K, 1/4W, 2%		-
03	4720023	Precision, 180K, 1/2W, 2%	3510000 Bearing, OBS Drive Shaft	_
04	4700043	Precision, 180K, 1/2W, 2% 33K, 1/2W, 10% 220K, 1/2W, 10%	2840015 Grommet, Rubber, 5/16 in. I.D. 2100013 Connector, 12 pin, Male	
0 5	4700053	220K, 1/5W, 10%	2100013 Connector, 12 pin, Male 2100010 Connector, 12 pin, Female	
06	4720032	39K, ½W, 5%	2100010 Connector, 12 pin, Female	
:07		Unassigned	2100018 Cover, Connector 6070013 Clamp, Cable	
108	4700049	100K 1/5W 10%	6070013 Clamp, Cable 1700039 Printed Circuit Board, Meter Lamp 7	
89	4700058	1 Meg., 1/2W, 10%		erminal
10	4720036	56K, 1/2W, 5%	manual, Pilots Information, THETA/3	100 & 400
11	4720022	Precision, 150K, 1/4W, 2%	Manual, installation, I HEIA/300 & 4	30
		· · · · · · · · · · · · · · · · · · ·	1090402 Manual, Maintenance, THETA/300 &	Ann

Specifications Subject To Change Without Notice

GENERAL AVIATION ELECTRONICS

INC.

AREA 317 - 546-1111

SB7306

July 24, 1973

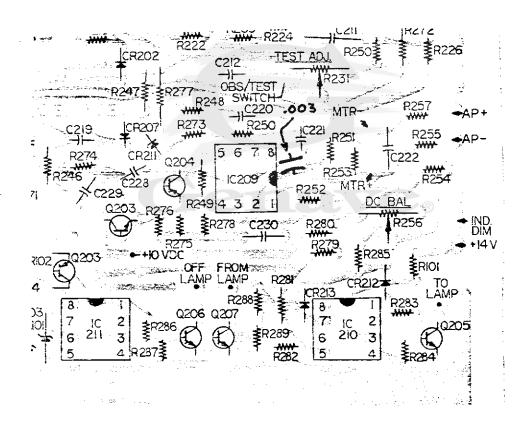
SUBJECT:

THETA/300 and THETA/400 Localizer Signal Dropout and Meter Needle Jitter

Localizer Signal Dropout

Some reports have been received from the field concerning localizer signal dropout in the THETA/300 and THETA/400. The problem can be resolved by selecting a value for R263 which is lower than the 1 meg installed at the factory. Reducing the value to approximately 500K will reduce the amount of localizer signal needed to achieve "lockup". The following procedure can be used to select the correct value for R263.

- Connect the THETA/300 or THETA/400 under test to a Tel-Instruments T-12A NAV/COM Generator or equivalent. (Refer to test setup in THETA/300-400 Maintenance Manual).
- Apply a standard localizer signal to the unit for a centered needle indication. Generator output should be 500 MV at approximately 40% modulation with 90Hz and 150Hz modulating signals.
- Delete either the 90Hz or 150Hz modulation and check for an "OFF" light indication.
- Turn-on both modulating signals with 40% modulation. Reduce modulation until the "OFF" light is activated. At this point the percentage of modulation should be 10% or less.
- 5. If the "CFF" light comes on at 15% or 30% modulation, solder a 1 meg resistor seress the existing 1 meg resistor (R263).


6. Again apply both modulating signals to the unit at 40% modulation. Reduce the total percentage of modulation to 10%. If the "OFF" light is activated by 10% modulation, no further modifications are required.

NOTE: If the "OFF" light comes on before the modulation is reduced to 10% it will be necessary to decrease the value of the shunt resistor. At 10% or less modulation the "OFF" light should be activated.

7. Apply the modulating signals to the unit at 40% modulation. Delete either the 90 Hz or the 150 Hz modulating signals. The "TO" light should drop out with either signal deleted. This completes the modification and test procedures.

Meter Needle Jitter

There have been reports from the field of occasional meter needle "pegging" or jitter about the centered needle position. The meter can be stabilized by installing a .003 mfd capacitor between pins 2 and 3 of IC209. (See Figure 1.)

GENERAL AVIATION **ELECTRONICS** INC.

CB1011

April 12, 1973

IC207B 5 IC207B 7

The following changes should be noted in the THETA/300-400 Maintenance Manual prior to its use.

The following changes have been made to THETA/300's after Serial No. 31-60 and THETA/400's after Serial No. 41-25. These changes have been made to (A) prevent "offcourse" dropout in the ILS mode and (B) reduce susceptibility to transmitter interference.

Ref. No.	New Value	New Part No.
(A) R841	Selected	
(A) R263	Selected	-
(B) R262	270K, ½W, 10%	4700054
(B) C216	.1 mfd, disc, 12 V	1520055
(B) C226	.1 mfd, disc, 12 V	152005 5
(B) C219	.1 mfd, mylar, 100 V	1500039
(B) C228	.1 mfd, mylar, 100 V	1500039
(B) R248	100K, 2%, metalized film	n 4720021
(B) R273	100K, 2%, metalized film	n 4720021
(B) R243	100K, ½W, 10%	4700049
(B) R268	82K, ½w, 10%	4700048
(B) R232	33K, 5%, metalized film	4720031
(B) R258	33K, 5%, metalized film	4720031

The following additional bypassing capacitors have been added:

	New Ref. No	• New Value	New P/N	From	То
	C233	220 pfd	1520034	IC206A 1	IC206A 2
	C234	220 pfd	1520034	IC206B 5	IC206B 6
This manual is	for educational purposes only. The senave shall 2nd 5e liable for a Cop	ne accuracy and completenes ny loss of damant Use at pyright © 2007 Genave/NRC,	ss of the information property you 520034 Inauth Inc. All rights reserve	rovided bergin is not go horize CZOZB on 6 s ved.	pr Ground

220 pfd

1520034

C236

0237 0238	220 pfd .0033 mfd	1520034 1520030	IC209A 3 IC209A 1	IC209B 6 Ground
0815	220 pfd	1520034	Wiper R800	Ground
0816	220 pfd	1520034	IC801B 8	+ve lead C811

Due to differences in inductance values of parts used for L201 and L202, C206 and C208 may be of different values than those specified in the Maintenance Manual. The gray color banded coils (47,000 uhy) require a higher tuning capacitance than the tan colored coils (50,000 uhy). The information contained in the maintenance manual applies to the tan colored coils, therefore, if the gray color banded coils are used the following capacitance values will apply.

kef. No.	Value	Part No.
C206	.0068 mfd.	1500016
0208	.0047 mfd.	1500012

The additional page enclosed with this correction bulletin is to be inserted into the maintenance manual in front of the waveform photographs of Section 4. This page which is labeled "ADITIONAL WAVEFORM INFORMATION" lists the corresponding waveform amplitude information.